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Abstract

We introduce a conceptually novel and powerful tech-
nique to achieve fault tolerance in hardware and soft-
wate systems. When used for software fault tolerance,
this new technique uses time and software redundancy
and can be outlined as follows. In the initial phase,
8 program is run {o solve a problem and store the re-
sult. In addition, this program leaves behind a trail of
data which we call a certification trail. In the second
phase, another program is run which solves the origi-
nal problem again. This program, however, has access
to the certification trail left by the first program. Be-
cause of the availability of the certification trail, the
second phase can be performed by a less complex pro-
gram and can execute more quickly. In the final phase,
the two results are compared and if they agree the re-
sults are accepted as correct; otherwise an error is indi-
cated. An essential aspect of this approach is that the
second program must always generate either an error
indication or a correct output even when the certifica-
tion trail it receives from the first program is incorrect.
We formalize the certification trail approach to fault
tolerance and illustrate it by applying it to the funda-
mental problem of finding a minimum spanning tree.
We discuss cases in which the second phase can be
tun concurrently with the first and act as a monitor.
We compare the certification trail approach to other
approaches to fault tolerance. Because of space lim-
itations we have ommited examples of our technique
applied to the Huffman tree, and convex hull problems.
These can be found in the full version of this paper.

1 Introduction

In this paper we introduce a novel and powerful tech-
Rique for achieving fault tolerance in systems. Al-
though applicable to both hardware and software, we
testrict our discussion of this technique in the follow-
ing to software fault tolerance. To explain our new

—

"Research partially supported by NSF Grants CCR-8910569
and CCR-2908092,

?Research parially supported by NASA Grant NSG 1442,

CH 2877-9/90/0000/0423/801.00 — 1990 |EEE

423

technique for software fault tolerance, we will first dis-
cuss a simpler fault tolerant software method. In this
method the specification of a problem is given and an
algotithm to solve it is constructed. This algotithm is
executed on an input and the output is stored. Next,
the same algorithm is executed again on the same in-
put and the output is compared to the earlier output.
If the outputs differ then an error is indicated, oth-
erwise the output is accepted as correct. This soft-
ware fault tolerance method requires additional time,
so called time redundancy [14, 22); however, it requires
no additional software. It is particularly valuable for
detecting errors caused by transient fault phenomena.
If such faults cause an error during only one of the ex-
ecutions then either the error will be detected or the
output will be correct.

A variation of the above method uses two separate
algorithms, one for each execution, which have been
written independently based on the problem specifica-
tion. This technique, called N-version programming8,
4] (in this case N=2), allows for the detection of errors
caused by some faults in the software in addition to
those caused by transient hardware faults and utilizes
both time and software redundancy. Errors caused
by software faults are detected whenever the indepen-
dently written programs do not generate coincident
errors.

The technique we will describe is designed to achieve
similar types of error detection capabilities but expend
fewer resources. The central idea, as illustrated in Fig-
ure 1, is to modify the first algorithm so that it leaves
behind a trail of data which we call a certification trail.
This data is chosen so that it can sllow the the see-
ond algorithm to execute more quickly and/or have a
simpler structure than the first algorithm. As above,
the outputs of the two execntions are compared and
are considered correct only if they agree. Nale, how-
ever, we must be careful in defining this method or
else its error detection capability might be reduced
by the introduction of data dependency between the
two algorithm executions. For example, suppose the
first algorithm execution contains a error which canses
an incorrect output and an incorrect trail of data to
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Figure 1: Certification trail method.

be generated., Further suppose that no error occurs
during the execution of the second algorithm. It still
appea:s possible that the execution of the second al-
gorithm might use the incorrect trail to generale an
incorrect output which matches the incorrect output
given by the execution of the first algorithm. Intu-
itively, the second execulion would be “fooled” by the
data left behind by the first execution. The definitions
we give below :xclude this possibility. They demand
that the second execution either generates a correct
answer or signals the fact that an error has been de-
tected in the data trail. Finally, it should be noted that
in Figure 1 both executions can signal an error. These
errors would include run-time errors such as divide-by-
zero or non-terminating computation. In addition the
second execution can signal error due to an incorrect
certification trail.

2 Formal Definition of a Certi-
fication Trail

In this section we will give a formal definition of a
certification trail and discuss some aspects of its real-
izations and uses.

Definition 2.1 A problem P is formalized as a rela-
tion (that is, a set of ordered pairs). Let D be the
domain (that is, the set of inputs) of the relation P
and let S be the range (that is, the set of solutions)
for the problem. We say an algorithm A solves a piob-
lem P iff for all d € D when d is input to A then an
s € S is output such that (d,s) € P.

Definition 2.2 Let P : D — S be a problem. Let
T be the set of certification trails. A solution to this
problem using a certification trail consists of two func-
tions Fy and F; with the following domains and ranges
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Fi:D—~SxTend F3:DxT — S U {error}. The
functions must satisfy the following iwo properties;

(1) for all d € D there exists 4 € S and
there exists ¢ € T such that
Fy(d) = (s,t) and F3(d,t) = s and (d,s) € P
(2)forallde Dand forall t€ T
cither (F3(d,t) = s and (d,s) € P) or
Fi(d, 1) = error.

The definitions above assure that the error detec-
tion capability of the certification trail approach is
compatable to that obtained with the simple time re-
dundancy approach discussed earlier. That is, if tran-
sient hardware faults occur during only one of the ex-
ecutions then either an error will be detected or tlie
output will be correct. It should be further noled,
however, the examples to be considered will indicate
that this new approach can also save overall execution
time.

The certification trail approach also allows for the
detection of faults in software. As in 2-version pro-
gramming, separate teams can write the algorithms for
the first and second executions. Note that the speci-
fication now must include precise information describ-
ing the generation and use of the certification trail.
Because of the additional data available to the sec-
ond execution, the specifications of the two phases
can be very different; similarly, the two algorithms
used to implement the phases can be very different.
This is illustrated by the convex hull example in the
full paper. Alternatively, the two algorithms can be
very similar, differing only in data structure manipu-
lations. This is illustrated by the minimum spanning
tree example considered later. When significantly dif-
ferent algorithms are used, the probability that both
algorithms will contain or be eflected by faults which
generate matching errors should be reduced. When
very similar algorithms are used it is sometimes pos-
sible o save programming effort by sharing program
code. While this reduces the ability to detect errors
in the software it does not change the ability to delect
transient hardware errors as discussed earlier.

Throughout this section we have assumed that our
method is implemented with software; however, it is
clearly possible to implement the certification trail tech-
nique by using dedicated hardware. It is also possible
to generalize the basic two-level hierarchy of the cer-
tification trail approach as illustrated in Figure 1 lo
higher levels. Finally, we note that a wide variety of
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approaches to software and hardware fault tolerance
have been proposed which bear resemblances to the
certification trail approach; we contrast our method
to the most closely related ideas. A more comprehen-
sive comparison appears in the full paper.

3 Minimum Spanning Tree Ex-
ample

In this section we illustrate the use of the certification
trail method by applying it to the minimum spanning
tree problem. Because of space limitations we have
ommited other applications, ¢.g., to the Hufflman tree
and the convex hull problems. It should be stressed
here that we believe the technique has wide applica-
bility and these problems were chosen simply for illus-
tration.

The minimum spanning tree problem has been ex-
amined extensively in the literature and an historical
survey is given in [11]. Our certification trail approach
is applied to a variant of the Prim/Dijkstra algorithm
[19, 9] as explicated in [24). We will begin our dis-
cussion of the application of the certification trail ap-
proach to the minimum spanning tree problem with
some preliminary definitions.

Definition 3.1 A graph G = (V, E) consists of a ver-
tez set V and an edge set E. An edge is an un-
ordered pair of distinct vertices which we notate as,
for example, [v, w), and we say v is adjacent to w. A
path in a graph from v; to vy is & sequence of ver-
tices vy, v3,...,ts such that [v;, v;41] is an edge for
ic{1,....,k~1}). A pathisa cycleif k > 1 and
?1 = vx. An acyclic graph is a graph which contains
no cycles. A connected graph is a graph such that for
all pairs of vertices v,w there is a path from v to w. A
tree is an acyclic and connected graph.

Definition 3.2 Let G = (V, E) be a graph and let w
be a positive rational valued function defined on E.
A subtree of G is a tree, T(V', E'), with V' C V and
E' C E. We say T spans V' and V' is spanned by
T. If V' = V then we say T is a spanning tree of G.
"The weight of this tree is T,z w(e). A minimum
Spanning tree is a spanning tree of minimum weight.

3.0.1 Data structures and supported opera-
tions

Before we discuss the minimum spanning tree algo-
rithm, we must describe the properties of the principle
data structure that are required. Since many different
data structures can be used to implement the algo-
rithm, we initially describe abstracily the data that
can be stored by the data structure and the operations
that can be used to manipulate this data. The data
consists of a seu of ordered pairs. The first element in
these ordered pairs is referred to as the item number
and the second element is called the key value. Or-
dered paits may be added and removed from the set;
however, at all times, the item numbers of distinct or-
dered pairs must be distinct. It is possible, though,
for multiple ordered pairs to have the same key value.
In this paper the item numbers are integers between 1
and n, inclusive. Our default convention is that i is an
item number, k is a key value and h is a set of ordered
pairs. A total ordering on the pairs of a set can be
defined lexicographically as follows: (i, k) < (¥, k') iff
k < k" or (k = k' and i < ). Our data structure
should support a subset of the following operations.

member(i, k) returns a boolean value of true if A con-
tains an ordered pair with item number i, other-
wise returns false.

insert(i, k, h) adds the ordered pair (i, k) to the set A.

delete(i, h) deletes the unique ordered pair with item
number i from A.

changekey(i, k, k) is executed only when there is an
ordered pair with item number i in h. This pair
is replaced by (i, k).

deletemin(h) returns the ordered pair which is small-
est according to the total order defined above
and deletes this pair. If A is the empty set then
the token “empty” is returned.

predecessor(i, h) returns the item number of the or-
dered pair which immediately precedes the pair
with item number 7 in the total order. If there
is no predecessor then the token “smallest™ is
returned.

Many different types and combinations of data struc-
tures can be used to support these operations effi-
ciently. In our case, we will actually use two different
data structure methods to support these operations.
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One method will be used in the first execution of the
slgorithin and another, faster and simpler, method will
be used in the second execution. 1'he second metihod
relies on o trail of data which is output by the first
execution.

3.0.2 NMINSPAN alg rithm

Before discussing precise implementation details for
these methods we present the overall algorithm used
in both executions. Pidgin code for this algorithm ap-
pears below. In addition, Figure 2 illustrates the exe-
cution of the algorithin on a sample graph and the ta-
ble below records the data structure operations the al-
gorithm must perform when run on the sample graph.
The first column of the table gives the operations ex-
cept member and with the parameter h dropped to
reduce clutter. The second column gives the evolving
contents of h. The third column records the ordered
pair deleted by the delctemin operation. The fourth
column records the certification trail corresponding to
these operations and is further discussed below.

The algorithm uses a “greedy” method to “grow”
a minimum spanning tree. The algorithm starts by
choosing an arbitrary vertex from which to grow the
tree. During each iteration of the algorithin a new
edge is added to the tree being constructed. Thus, the
set of vertices spanned by the tree increases by exactly
one vertex for cach iteration. The edge which is added
to the tree is the one with the smallest weight. Fig-
ure 2 shows this process in action. Figure 2(a) shows
the input graph, Figures 2(b) through 2(e) show sev-
eral stages of the tree growth and Figure 2(f) shows
the final output of the minimum spanning tree. The
solid edges in Figures 2(b) through 2(e) represent the
current tree and the dotted edges represent candidates
for addition to the tree.

To efficiently find the edge to add to the current
tree the algorithm uses the data structure operations
described above. As soon as a vertex , say v, is ad-
jacent to some vertex which is currently spanned it is

inserted in the set h. The key value for v is the weight .

of the minimumn weight edge between v and sone ver-
tex spanned by the current tree. The array element
prefer(v) is used to keep track of this minimum weight
edge. As the tree grows, information is updated by op-
erations such as insert(i, k, h) and changekey(i, k,h).
The delctemin(h) operation is used to select the next
vertex to add to the span of the current trec. Note,
the algorithm does not explicitly keep a sel of edges
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Figure 2:
rithm.

Example for minimum spanning tree algo-

representing the current tree. Implicitly, however, if
(v, %) is returncd by deletemin then prefer(v) is added
to the current tree.

3.0.3 First execution of MINSPAN

In the first execution of the algorithm, the MINSPAN
code is used and the principle data structure is imple-
mented with a balanced search tree such as an AVL
tree (1), a red-black tree {12, or & b-tree [5]. In addi-
tion, an array of pointers indexed from 1 to n is used.
The valanced search tree stores the ordered pairs in A
and is based on the total orde: described eatlier. The
array of pointers is initially all nil. For each item i,
the ith pointer of the array is used to point to the lo-
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Algorithm MINSPAN(G,weight)

Input: Connected graph G = (V, E) where V = {1,...,n}

with edge weights.
Output: Spanning tree of G which has minimum weight
1 CHOOSE root £V
FOR ALL u € V, key(x) := 00 END FOR
h:=9; v:=root
WHILE v # empty DO
key(v) 1= -
FOR EACH [v,w)€ E DO
IF weight(|v, w]) < key{w) THEN
key(w) := weight([v, w]); prefer(w) := [v, w]
IF member(w, h) THEN changekey(w, key(w), k)
10 ELSE insert(w, key(w), A) END IF
11 ENDIF
12 END FOR
13 (v, k) := deletemin(h)
14 END WHILE
15 FOR ALL u € V - {root}, OUTPUT(prefer(u))
END MINSPAN

WG~ N

Figure 3: Code for MINSPAN Algorithm

Operation Set of Ordered Pairs Trail
insert(2,200) (2,200) smallest
insert(6,500) (2,200),(6,500) 2
deletemnin (6,500)

insert(3,800) (6,500),(3,300) 6
changekey(6,450) (6,450),(3,800) smallest

insert(7,505)
deletemin
insert(5,250)
changekey(7,495)
deletemin
changekey(3,350)
ingert(4,700)

(6,450),(7,505),(3,800) 6
(7,505),(3,800)
(5,250),(7,505),(3,800) smallest
(5,250),(7,495),(3,800) 5-
(7,495),(3,800)

(3,350),(7,495) smallest
(3,350),(7,495),(4,700) 7

deletemin (7,495),(4,700)
changekey(4,650) (7,495),(4,650) 7
deletemin (4,650)

deletemin

deletemin

Table 1: Data structure operations and certification
trail for MINSPAN

OF POOR QuALrry

cation of the ordered pair with item number i in the
balanced search tree. If there is no such ordered pair
in the tree then the ith pointer is nil. This array allows
rapid execution of operations such as member(i, i) and
delete(t, h).

The certification trail is generated during the first
execution as follows: When CHOOSE root € V is exe-
culed in the first step, the vertex which is chosen is out-
put. Also, each time insert(i, k, h) or changekey(i, k, k)
are executed, predecessor(i, h) is executed afterwards,
and the answer returned is output. This is illustrated
in column labeled “Trail” in the table above.

3.0.4 Second execution of MINSPAN

The second execution of the algorithm also uses the
MINSPAN code; however, the CHOOSE construct and
the data structure operations are implemented differ-
ently than in the first execution. The CHOOSE is
performed by simply reading the first element of the
certification trail. This guarantees the same choice of
a starting vertex is made in both executions. Figure 4
depicts the principle data structure used which we call
an indezed linked list. The array is indexed froml ton
and contains pointers to a singly linked list which rep-
tesents the current contents of h. Each element in the
list stores an ordered pair in h except the head of the
list which contains the special ordered pair (0, —=INF).
The list is organized such that a traversal from the
head gives the sorted ordering of the current contents
of h from smallest to largest. The ith element of the
array points to the node containing the ordered pair
with the item number i if it is present in h; otherwise,
the pointer is nil. The Oth element of the array points
to the node containing (0, —INF). Initially, the array
contains nil pointers except the Oth element. We now

" show how to implement the data structure operations.

To perform inseri(i, k, h), it is necessary to read
the next value in the certification trail. This value,
say j, is the item number of the ordered pair which is
the predecessor of (i, k) in the current contents of h.
A new linked list node is allocated and the teail infor-
mation is used to insert the node into the data <true-
ture. Specifically, the jth arrav pointer is traversed
to 2 node in the linked list. say Y. (If j = “smallest”
then the Oth array pointer is traversed.) The new node °
is inserted in the list just after node Y and before the
next node in the linked list (if there is one). The data
field in the new node is set to (i, k) and the ith pointer
of the array is set to point to the new node. Figure
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4 shows the insertion of (7,505) into the data struc-
ture given that the certification trail value is 6. Figure
3(a) is before the insertion and Figure 3(b) is after the
insertion,

When the insert operation is performed, some checks
must be conducted. First, the ith array pointer must
be nil before the operation is performed. Second, the
sorled order of the pairs stored in the linked list must
be preserved after the operation. That is, if (', k') is
stored in the node before (i, k) in the linked list and
(", k") is stored after (i, k), then (i',k') < (i,k) <
(i”, k") must hold in the total order. If either of these
checks fails then execution halts and “error™ is output.

To perform delete(i, h) the ith array pointer is tra-
versed and the node found is deleted from the linked
list. Next, the ith array pointer is set to nil. Figure
4 shows the deletion of item nummber T if one consid-
ers Figure 3(a) as depicting the data struclure before
the operation and Figure 3(b) depicting it afterwards.
When the delete operatior is performed one check is
made. If the ith array pointer is nil before the opera-
tion then the execution halts and “error” is output.

To perform changekey(i, k, k) it suffices to perform
delete(i, h) followed by insert(i, k, h). Note, this means
the next item in the certification trail is read. Also,
the checks associated with both these two operations
are performed and the execution halts with “error”
output if any check fails.

To perform deletemnin(h) the Oth array pointer is
traversed. to the head of the list and the next node
in the list is accessed. If there is no such node then
“empty™ is returned and the operation is complete.
Otherwise, suppose the node is Y and suppose it con-
tains the ordered pair (i, k), then the node ¥ is deleted
from the list, the ith array pointer is set to nil, and
(i, k) is returned.

Lastly, to perform member(i, k) the ith array pointer
is examined. If it is nil then false is returned, other-
wise, true is returned. The predecessor(i, k) operation
is not used in the second execution.

This completes the description of the second exe-
cution. To show that what we have described is & cor-
rect implementation of the certification trail method
requires a proof. The proof has several parts of varying
difficulty. First, one must show that if the first execu-
tion is fault-{free then it outpuls a minimum spanning
tree. Second, one must show that if the first and sec-
ond executions are fault-free then they both output
the same minimum spanning tree. Both these parts of
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Figure 4: Example of the dats struclure used in the
second execution of MINSPAN,

the proof are not difficult to show.

The third mozre subtle part of the proof deals with
the situation in which only the second exccution is
fault-free. This means an incorrect certification trail
may be generated in the first execution. In this case,
we must show that the second execution outputs ei-
ther the correct minimum spanning tree or “error”.
The checks that were described above have been care.
fully designed to assure precisely this property by de-
tecting any errors that would prevent the executijon
from generating the correct output. Becausc of space
restrictions we will not give the proof here.

3.0.5 Time complexity comparisons of the two
executions

In the first execution each data structure operation
can be performed in O(log{n)) time where [V]| = n.
There are at most O(m) such operations and O(m)
additional time overhead where |E| = m. Thus, the
first execution can be performed in O{(inlog(n)) We
noie that this algorithm does not achieve the fastest
known asymptotic time complexity which appears in
[10]. Mowever, the algntithin we have presented has a
significant! smaller constant of proportionality which
makes it competitive {or reasonably sized graphs. In
addition, it provides us with a relatively simple and
illustrative example of the use of & certification trail.
It should be mentioned that we have developed 8 more
complex certification trail solution for an asymptoti-
cally faster minimum spanning tree algorithm which
uses fibonacci heaps.
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In the second execution each dala structure oper-
ation can be performed in O(1). There are still at
most O(m) such operations and O(m) additional time
overthead. Hence, the second execution can be per-
formed in O(m) time. In other words, because of the
availability of the certification trail, the second ezecu-
tion is performed in linear time. There are no known
O(m) time algorithms for the minimum spanning tree
problem. Komlds was able to show that O(m) com-
parisons suffice to find the minimum spanning tree.
However, there is nc known O(m) time algorithm to
actually find and perform these comparisons. Even
the related “verification”™ problem has no known lin-
ear time solution. In the verification problem the input
consists of an edge weighted graph and a subtree. The
ouput is “yes” if the subtree is the minimum spanning
tree and “no” otherwise. The best known algorithm
for this problem was created by Tarjan [25] and has
the nonlinear time complexity of O(ma(m, n}), where
a(m, n) is a functional inverse of Ackerman’s function.
The fact that the data in a certification trail enables
a minimnm spanning tree to be found in linear time
is, we believe, intriguing, significant, and indicative of
the great promise of the certification trail technique.

3.1 Concurrency of Executions

In some cases, it is possible to start the second execu-
tion before the first execution has terminated. This is
a highly desirable capability when additional hardware
is available to run the second execution (for example,
with multiprocessor machines, or machines with co-
processors or hardware monitors).

In the case of the minimum spanning tree prob-
lem, the two executions can be run concurrently. It
is only necessary for the second execution to read the
certification trail as it is generated - one item number
at a time. Thus there is a slight time lag in the sec-
ond execution. This potential for concurrecy has been
found in other problems we have examined, e.g., the
Huffman tree problem.

An additional opportunity for overlapping execu-
tion occurs when the system has a dedicated compara-
tor. In this case it is sometimes possible for the two
executions {o send there ouipul to the comparator as
they generate it. For example, this can be done in the
minimum spanning tree problem where the edges of
the tree can be sent individually as they are discov-
ered by both executions.
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4 Comparison of Techniques

The certification trail approach, whether implemented
in hardware or software or some combination thereof,
has resemblances with other fault tolerant techniques
that have been previously proposed and exaniined, but
in each case there are significant and fundamental dis-
tinctions. These distinctions are primatily related to
the generation and character of the certification trail
and the manner in which the secondary algorithm or
system uses the certification trail to indicate whether
the execution of the primary system or algorithm was
in error and/or to produce an output to be compared
with that of the primary system.

To begin, we compare the certification trail ap-
proach to N-version programming(8, 4]. This approach
specifies that N different implementations of an al-
gorithm be independently executed with subsequent
comparison of the resulting N outputs. There is no
relationship among the executions of the different ver-
sions of the algorithms other than they all use the
same input; each algorithm is executed independently
without any information about the execution of the
other algorithms. In marked contrast, the certification
trail approach allows the primary system to generate a
trail of information while executing its algorithm that
is eritical to the secondary system’s execution of its
algorithm. In effect, N-version programming can be
thought of relative to the certification trail approach
as the employment of a null trail.

A software/hardware fault tolerance technique called
the recovery block approach [20, 2, 17] uses accepilance
tests and alternative procedures to produce what is to
be regarded as a correct output from a program. When
using recovery blocks, a program is viewed as a being
structured into blocks of operations which after exe-
cution yield outputs which can be tested in some in-
formal sense for correctness. The rigor, completeness,
and nature of the acceptance test is left to the program
designer {2]. Indeed, formal methodologies for the def-
inition and generation of acceptance tests have thus
far not been fully established. Regardless. the certifi-
cation trail notion of a serondary svsfem that receives
the same input as the primary svstem and executes
an algorithm that takes advantage of this trail to effi-
ciently produce the correct output and/or to indicate
that the execution of the first algorithmn was correct
does not fall into the category of an acceptance test,

Recently Blum and Kannan{7] have defined what
they call a program checker. A program checker is

OMGINAL PAGE 18
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an algorithm which checks the output of another algo-
tithm for correctness and thus it is similar to an accep-
lance test in a recovery block. An example of a pro-
gram checker is the algorithm developed by Tarjan|25)
which takes as input a graph and a supposed mini-
nmum spanning tree and indicates whether or not the
tree actually is @ minimum spanning tree. The Blum
and Kannan checker is actually more general than this
because it is allowed to be probabilistic in a care-
fully specified way. There are two main differences
between this approach and the certification trail ap-
proach. First, a program checker may call the algo-
rithm it is checking a polynomial number of timnes. In
out approach the algorithm being checked is run once.
Second, the checker is designed to work for a prob-
lem and not a specific algorithin. That is, the checker
design is based on the input/cutput specification of a
problem. The certification trail approach is explicitly
algorithm oriented. In other words, a specific algo-
rithm for a problem is modified to output a certifi-
cation trail. This trail sometimes allows the second
execution to be faster than any known program check-
ers for the problem. This is the case for the minimum
spanning tree problem.

Space limitations preclude comparisons with the
following other relevant techniques: watchdog proces-
sors 18, 6), algorithm based fault tolerance [13], exe-
cutable assertions [3].

5 Concluding Discussion

We have presented a new, powerful fault tolerant com-
puting technique called the certification trail approach.
Our description of this technique has been only in
terms of applications to software fault tolerance, but
the certification trail approach can also be implemented
with hardware. We have illustrated the certification
trail technique by applying it to a minimum spanning
tree algorithm. The full version of this paper includes
applications to a Huffman tree algorithm, and a con-
vex hull algorithm. It should be understood that the
approach is in no way limited to these algorithins. We
believe that our consideration of these algorithms gives
insight into the significance and desirability of the ap-
proach. We have found several other algorithms to
which our techniques apply including an algorithm for
the shortest path problem and we believe the technique
will be widely applicable. We have also examined the
general problem of “certifying” data structure opera-
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tions as discussed above and have proven results fo,
additional data structures. These results are impor.
tant because they allow the certification trail approach
to be applied to any algorithm which uses one of these
date structures.

In the problem discussed an asymptotic speed up
was achieved between the first execution and the sec-

-ond execution which was greater than any constant

factor. We note, however, even if the speed up were
only by 8 constant factor, it would still make sénse
to use the technique because execution time would be
saved. We also note that the certification trajl tech-
nique can be used in conjunction with other software
fault tolerance techniques. For example, multiple al-
gorithins can be developed which generate and teag
multiple (but diflferent) certification trails. Furthe;,
these algorithms could be written by separate teams of
individuals. A general architecture for the interaction
of these algorithms is an important research topic. For
example, a “cascade™ of algorithms numbered from }
to N could be designed such that algorithm { sends
a certification trail to i + 1 which allows { + 1 1o rup
faster than i. When errors are detected, other ve;-
sions of algorithms can be invoked which may use an
earlier certification trail or ignore it. The ideas devel-
oped in recovery blocks and N-version programming
among others could be used as guidance in exploring
such issues.
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Figure 1: Certification trail method.

output such that (d,s) € P.

l?eﬁnition 2.2 Let P: D — S be a problem. A solu-
tion to this problem using a certification trail consists
of two functions Fy and F; with the following domains
and ranges F; : D - SxTand F; : Dx T —

S U {error}. T is the set of certification trails. The

functions must satisfy the following two properties:

(1) for all d € D there exists s € S and
there exists ¢ € T such that
Fi(d) = (s,t) and F3(d,t) = s and (d,s) € P
(2)foraldeDand forallte T
cither (F3(d,t) = s and (d,s) € P) or
Fy(d,t) = error. '

We also require that F; and F; be implemented

o th_at they map elements which are not in their re-
spective domains to the error symbol. The definitions
‘b°ye assure that the error-detection capability of the
Certification-trail approach is similar to that obtained
"“1} the simple time-redundancy approach discussed
Wl_let. (That is, if transient hardware faults occur
UIng only one of the executions then cither an er-
Tor will be detected or the output will be correct.) It
'hon_ld be further noted, however, the examples to be
Considered will indicate that this new approach can

save overall execution time.

- Observant readers of our earlier paper [11] in which
¢ Introduced the notion of a certification trail might
Ave noticed that our certification-trail solution for the

~spanning tree was generalizable. The generalized

or nique allows one to generate 8 certification trail
“m&ny algorithms which use a balanced binary tree
. & structure. However, the technique relies on the
Cent execution of the predecessor operstion and
structures such as heaps cannot execute

ﬂ:ltibed in this paper are even more general and pow-
» and they do apply to heaps.

wh The degree of diversity or independence achieved

®D using certification trails depends on how they

are used. A fuller discussion of this and of the re-
lationship between certification trails and other ap-
nroaches to software fault tolerance is contained in the
expanded version of [11). This current paper presents
asymptotic analysis which shows that the certification-
trail approach is desirable even when the overhead of
generating the certification-trail is included. We are
currently working on an experimental analysis of the
method and initial results are quite promising.

3 Answer-Validation Problem for

Abstract Data Types

Our general approach to applying certification trails
uses the concept of an abstract data type. Some exam-
ples of abstract data types are given later in this paper.
Here we mention some important common properties
and give a short illustration. Each abstract data type
has a well defined data object or set of dats objects,
and each abstract data type has a carefully defined fi-
nite collection of operations that can be performed on
its data object(s). Each operation takes a finite num-
ber of arguments (possibly zero), and some but not
all operations return answers. An example of an ab-
stract data type is a priority queue. The data object
for a priority queue is an ordered pair of the form (i, k)
where i is an item number and k is a key value. A pri-
ority quene has two operations: insert(i,k) and delmin.
The insert operation has two arguments: item number
i and key value k. The insert operation does not return
an answer. The delmin operation has no arguments,
but it does return an answer. The precise semantics
of these operations are given later in this paper.

For each abstract data type we define an answer-
validation problem. Intuitively, the answer validation
problem consists of checking the correctness of & se-
quence of supposed answers to a sequence of opera-
tions performed on the abstract data type. More for-
mally, the input to the answer-validation problem is
a sequence of operations on the absiract data type
together with the arguments of each operation. In ad-
dition, the sequence contains the supposed answers for
each of the operations which return answers. In par-
ticular, each supposed answer is paired with the oper-
ation that is supposed to return it. Examples of such
inputs are given in the columns labelled “Operation”
and “Answer” of table 1 and table 2.

The output for the answer-validation problem is
the word “correct™ if the answers given in the input
match the answers that would be generated by aclually
performing the operations. The output is the word
“incorrect” if the answers do not match. It is also
useful to allow the output word to say “ill-formed™.
This output is used if the sequence of operations is ill-
formed, e.g., an operstion has too many arguments or
an argument refers Lo an inappropriate-object.
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Abstract

Certification trails are a recently introduced and promis-
ing approach to fault detection and fault tolerance {11).
In this paper, we significantly generalize the applica-
bility of the certification trail technique. Previously,
certification trails had to be customized to each algo-
rithm application, but here we develop trails appro-
priate to wide classes of algorithms. These certifica-
tion trails are based on common data-structure oper-
ations such as those carried out using balanced binary
trees and heaps. Any algorithm using these sets of
operations can therefore employ the certification trail
method to achieve software fault tolerance. To exem-
plify the scope of the generalization of the certification
trail technique provided in this paper, constructions of
trails for abstract data types such as priority queues
and union-find structures will be given. These trails
are applicable to any data-structure implementation of
the abstract data type. It will also be shown that these
ideas lead naturally to monitors for data-structure op-
erations.

Keywords: Software fault tolerance, error monitor-
ing, certification trails, design diversity, dats struc-
tures.

1 Introduction

In this paper we significantly generalize the novel and
powerful certification-trail technique for achieving fault
tolezance in systems that was introduced in {11]. Al-
though applicable to both hardware and software, we
restrict our discussion of the certification-trail tech-
nique in the following to sofiware fault tolerance. To
explain the essence of the certification-trail technique
for software fault tolerance, we will first discuss a sim-
pler fault-tolerant software method. In this method
the specification of & problem is given and an algo-
rithm to solve it is constructed. This algorithm is ex-
ecuted on an input and the output is stored. Next,
the same algorithm is executed again on the same in-
put and the output is compared to the earlier output.
I the outputs differ then an error is indicated, other-
wise the output is accepted as correct. This software
fault tolerance method requires additional time, so-
called time redundancy [8, 10}); however, it requires no

1 Resenrch partially supported by NSF Grants CCR-8910569
and CCR-5008092.

?Rescarch partially supported by NASA Grent NSG 1442.

CH2985-0/91/0000/0240/$01.00 © 1991 IEEE
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additional software. It is particularly valuable for do. =

tecting errors caused by transient fault phenomena, ¢
such faults cause an error during only one of the ex.
ecutions then either the error will be detected or the
output will be correct. The second possibility, of unde.
tected faults, occurs when the output of the executiog
is unaflected by the faults.

The certification-trail technique is designed to ob-
tain similar types of error-detection capabilities byt
expend fewer resources. The central idea, as illys.
irated in Figure 1, is to modify the first algorithm
so that it leaves behind a trail of data which we call »
certification trail. This dats is chosen so that it can al-
Jow the the second algorithm to execute more quickly
and/or have a simpler structure than the first algo-
rithm. As above, the outputs of the two executions
are compared and are considered correct only if they
agree. Note, however, we must be careful in defining
this method or else its error detection capability might
be reduced by the introduction of dats dependency
between the two algorithm executions. For example,
suppose the first algorithm execution contains an error
which causes an incorrect output and an incorrect trail
of data to be generated. Further suppose that no erro:
occurs during the execution of the second algorithm. It
still appears possible that the execution of the second
algorithm might use the incorrect trail to generate an
incorrect output which matches the incorrect output
given by the execution of the first algorithm. Intu-
itively, the second execution would be “fooled™ by the
data left behind by the first execution. The definitions
we give below exclude this possibility. They demand
that the second execution either generate a correct an-
swer or signal that an error has been detected in the
dats trail.

2  Formal Definition of a Certi-
fication Trail

In this section we will give a formal definition of a
certification trail and discuss some aspects of its real-
izations and uses.

Definition 2.1 A problem P is formalized as a rela-
tion, i.e., & set of ordered pairs. Let D be the domain
(that is, the set of inputs) of the relation P and let
S be the range (that is, the set of solutions) for the
problem. We say an algorithm A solves a problem P
iff for all d € D when d is input to A thenans € Sis

Gad — 429
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The answer-validation probiem is similar to the
idea of an acceptance test which is used in the recovery-
block approach (9, 2] to sofiware fault tolerance. The
main difference is that an answer-validation problem is
dependent upon 8 sequence of answers, not just an in-
dividual answer. Hence, if an incorrect answer appears
in the sequence, it may not be detected immediately.
It is guarantieed, however, that an incorrect answer
will be detected at some point during the processing
of the entire sequence. By allowing for this latency in
detection, it is possible to create 8 much more efficient
procedure for solving the answer-validation problem.

In this paper we shall solve the validation problem
for two abstract data types. In the full version of this
paper we solve the answer-validation problem for more
general data types [12).

The most important aspect of the answer-validation
problem is that it is often possible to check the cor-
reciness of the answers to a sequence of operations
much more quickly than actually calculating what the
answers should be from scratch. In other words, the
answer-validation problem has a smaller time complex-
ity then the original abstract-data-type problem. For
example, to calculate the answers to 2 sequence of n
priority-queue operations takes {2(nlog(n)) time, how-
ever it is possible to check the correciness of the an-
swers in only O(n) time. This speedup is very useful
in fault-detection applications.

It is possible to run an answer-validation algorithm
for some abstract data type concurrently with some
algorithm which uses the abstract data type. The
answer-validation algorithm could act as a monitor
making sure that all interactions with the abstract
data type are handled correctly. This is valuable be-
cause many algorithms spend a large fraction of their
time operating on abstract data types. Note, the over-
head of this monitor is Jess than the overhead of ac-
tually performing the data-type operations a second
time.

One possible application of the answer-validation
problem occurs when it is used in conjunction with a
repairable data structure which allows for repair but
does not sutomatically attempt to dstect faults [16).
Suppose an abstract data type is implemented with
a repairable datae structure. One can use an answer-
validation procedure to detect errors in the answers
generated by the abstract data type. When an er-
ror is detected, a repair of the data structure can be
atiempted. In some cases, recovery and continued ex-
ecution will be possible.

Ir. the next section, we will show how to create cer-
tification trails for programs which use abstract data
types when those data types have efficient solutions
for their answer-validation problems.

[N}
I IS
ta

4 Schema for using Certificatigy
Trails

Suppose that we have developed an efficient solutiop ¢,
the answer-validation problem for some abstract da,
tyne. By efficient we mean the time complexity o
the answer-validation problem is smaller than the tipy,
complexity of the original abstract-data-type problep,
Further, suppose that we wish to run an algorithy,
say A, which uses that abstiract data type. To ;pp]‘:
the certification trail method we can use the followi,,'8
schema to yield the two executions:

First Execution:

Execute algorithm A.

Each time an absiract-data-type operation is performe-
append to the certification trail the identity of the op. '
eration, the arguments and the answer.

Second execution:

Phase One:
Velidate the correctness of the operations and sy
posed answers given in the certification trail. If the
validation returns “incorrect” or “ill-formed” then out.
put “error” and stop. Otherwise, continue.

Phase Two:
Execute algorithm A.
Each time an abstract-data-type operation is performed,
read the next entry in the certification trail. Make sure
that the operation and the arguments in the certifica-
tion trail agree with those requested in the algorithm.
If not output “error” and stop. Otherwise, use the
answer given in the certification trail and continue.

In the final step the outputs from the two execu.
tions are compared and the output is accepted or an e1-
ror is signaled. This schema car yield execution times
which are significantly faster than the execution time
obtained by running algorithm A twice, yet these two
methods give similar fault detection capabilities. That
iv, if transient hardware faults occur during orly one
of the executions then either an error will be detected
or the output will be correct. Note, the first execution
can be slower than a simple execution of algorithm §
A since it must output a certification trail. However,
the second execution can be significantly faster than
a simple execution of the algorithm since the interac-
tions with the abstract data type take less time overall.
The p+t eflect can be a major sperdup.

Suppose an algorithm uses multiple abstract data
types and suppose there are #fficient answer-validation
algorithms for each of these abstract data types. It is
easy to see how our method generalizer. We can leave
behind a generalized certification trail which consis:s
of & separate certificatior trail for each of the abstrac:
cata types. The effect on the speedup of the second
execution will be cumulative.
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Figure 2: Union Tree and with Find Edges

5 Answer Validation for Disjoint-

Set Union

As our first example we will discuss the disjoint-set
union problem. This problem concerns a dynamic col-
lection of sets in which pairs of sets can be combined
lo yield new sets. The underlying universe of set el-

ements consists of the integers from 1 to n inclusive.

Also, the universe of set names consists of the integers
from 1 to n inclusive. There are three operations that
can be performed:

create(A,x) creates a singleton set named A which
conu}ins element x. Since sets must be disjoint we
tequire that x not already be in some set.

union(A,B) creates a new set which is the union
of the sets named A and B. This new set is called A
and the set named B becomes undefined. It is required
that the sets named A and B sre originally defined and
are disjoint. )

find(x) returns the name of the set which contains

de_ment x. It is required that x be a member of some
unique set.

If an operation violates one of the requitements
described above then it is considered to be ill-formed.

0, if an operation has the wrong number or type of
arguments it is considered to be ill-formed.

. ln table 1 we give an example of a sequence of
Joint-set-union operations together with the answers
f°l’ find operations. In addition, the collection of sets
18 depicted as it is changed by the operations. For sim-
pl“‘_‘)’. in this example each set name corresponds to
¢ Integer originally contained in the set when it is
Cteated. Sets are listed by first giving the name of the
::: followed by a colon and then the contents of the

_The disjoint-sel-union problem is a classic problem
which has many applications [4] such as the off-line

Operation Answer Status of sets

create(1,1 1: l}_

create(2,2 1:{1},2:{2)

union(1,2) 1:{1,2}

find(2) 1

create(3,3) 1:{1,2},3:{3

create(4,4) 1:{1,2},3:{3},4: 4;
create(5,5) 1:{1,2},3:{3}.4:{4},5:{5)
union(5,3) 1:{1,2},4:{4},5:{3,5}
union(5,1) 4:{4},5:{1,2,3,5}
ﬁnd(2§ 5

find(5) 5

create(6,6) 4:{4},5:{1,2,3,5}.,6:{6)
union(4,6) 4:{4,6 ,511,2.3.5
create(7,7) 4:{4,6},5:{1,2,3,5},7:{7}
union(4,7) 4:{4,6,7},5:{1,2,3,5}
find(6) 4

Table 1: Sequence of operations for a Disjoint Set
Union

min problem, connected components, least-common
ancestors, and equivalence of finite automata. Of par-
ticular interest is the time-complexity of performing a
sequence of operations. Let us say the total number of
operations is m, which is assumed to be greater than
or equal to n. Recall, n is the number of set elements
and set names.

Tarjan gave the tight upper bound of O(ma(m, n))
(13, 14] for this problem. The a refers to the inverse
of Ackermann’s function which is a very slowly grow-
ing function. His solution and eatlier solutions used
a path-compression heuristic {15]. Fredman and Saks
gave a lower bound of (ma(m,n)) [5] in a general
cell-probe model. Gabow and Tarjan show how to
solve some important special cases of this problem in
O(m) time [6).

We now consider the answer-validation problem for
the disjoint-set-union date type. We will show that
this problem can be solved in O(m) time where m
is the number of operations. Note, this time com-
plexity is superior to the complexity of sctually pe:-
forming the sequence of operations as discussed above,
One method for solving this problem in O(m) time
uses the powerful techniques of Gabow and Tarjan [6).
However, we shall present a simpler method with a
small constant of proportionality that is tailored to
this problem.

To solve this problem we will build a forest based
on the union operations in the sequence. In addition,
we shall add edges to this forest based on the find
operations. As a final step we will perform a traversal
of the forest and perform appropriate checks. The solid
edges in figure 2 indicate the forest we would build for



i
H

llw n

e o e r rr— v

Lz

==
=

| o

the set of operations given in table 1. The dashed
edges indicate the edges we would add to the forest
based on the find operations.

Algorithm for Answer Validation for Disjoint-
Set Union

Input: sequence of m operations together with argu-
ments and supposed answers for the disjoint-set union
dats type.

Output: “correct”, “incorrect” or “ill-formed™

Declarations: Type treenode has fields left and right.
Type ireeleaf contains a list of pointers such that each
pointer points to a treenode or a trecleaf. Array ac-
tiveset is indexed by set name. Each array element is
a pointer to a treenode or a treeleaf. Array whereisis
indexed by an element number. Each array element
is & pointer to & treeleaf. Initially, all pointers are nil
and lists are null.

In the first phase of the algorithm we process each op-
eration as it appears serially using the following rules:

create(A,x): If activeset[A] or whereis(x] are non-nil
then output “ill-formed” and stop. Otherwise, allocate
a treeleaf and set activeset{A] and whereis[x] to the
sllocated node.

union(A,B): If activeset[A] or activeset[B] are nil then
output “ill-formed™ and stop. Otherwise, allocate a
treenode and set left to activeset[A] and right to ac-
tiveset{B]. Next set sctiveset[A] to the treenode and
set activeset[B] to nil.

find(x) A: (where A is the supposed answer to the
find.) If whereis[x} is nil then output “ill-formed™.
Otherwise, whereis[x] points to some treeleaf. Call it
tleaf. If activeset[A] is nil then output “ill-formed”.
Otherwise, activeset(A] points to some treeleaf or treen-
ode. Callit t. Add a pointer to { to the list of pointers
contained in treeleaf.

In the second phase of the algorithm we shall traverse
the structure we have built.

Scan thru the array activeset to find non-nil pointers.
It is not hard to see that each non-nil pointer points
to the root of & tree made up of nodes of type tnode
and tleaf. The tree uses the edges in the left and right
fields of tnode.

For each such tree perform a depth-first search. When-
ever the search reaches a node of type tleal traverse
the list of pointers that it contains. Check that each
pointer points to a node which is currently on the stack
which is used to perform the depth-first search. This is
equivalent to checking that each pointer in tleaf points
to a node which is an ancestor of tleaf in the tree.

If some pointer does not point to an ancestor then out-
put “incorrect™ and stop. Otherwise, output “correct”™
and stop.
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Theorem 5.1 The algorithm for answer validation
the disjoini-sei-union absiract data type is correct,

Theorem 5.2 The answer validation algorithm for 4;,.
joint sel union has a time complezity of O(m) for pro.
ccasing a sequence of m operations.

We omit these two theorems which overall are noy
difficult to show. We comment on one aspect of in.
plementation. In the second phase of the answer val;.
dation algorithm it is necessary to determine if certaip
nodes are on the stack during the tree traversal. This
can be done cfficiently as follows: First, each treen-
ode and each treeleaf can be assigned & unique iden.
tifier in the range 1 to 1n as it is allocated. Next, o
boolean vector of size m indexed by the unique iden.
tifiers described above can be allocated. This vector
can be used to keep track of which nodes are on the
stack during tree traversal by turning bits on and off,
This modified tree traversal algorithm still takes O(m)
time.

6 Generalized Priority Queue

We now describe a somewhat general abstract data
type. We will solve the answer validation problem for
restricted versions of this data type. The data consists
of a set of ordered pairs. The first eleinent in these or-
dered pairs is referred to as the item number and the
second element is called the key value. Ordered pairs
may be added and removed from the set, however, at
all times the item numbers of distinct ordered pairs
must be distinct. 1t is possible, though, for multiple
ordered pairs to have the same key value. In this pa.
per the itcm numbers are integers between 1 and n,
inclusive. Our default convention is that { is an item
number, k is a key value and h ic & set of ordered pairs.
A total ordering on the pairs of a sel can be defined
lexicographically as follows: (i, k) < (i, k') iff k < k'
or (k = k' and i < i'). The abstract data types we will
consider support a subset of the following operations.

member(i) returns a boolean value of true if the set
contauins an ordered pair with item number i,
otherwise returns false.

insert (i, k) adds the ordered pair (i, k) tn the set. We
require that no other pair with item number i be
“in the set.

delete(i) deletes the unique ordered pair with item.
number ¢ {rom the set. We require that a pair
with item number { be in the set initially.

chengekey(i, k) is executed only when there is an or-
dered pair with item number i in the set. This
pair is replaced by (i, k).

ey
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Operation Answer Validation stack
insert(6,300)

insert(2,404

insert(3,250

deletemin  (3,250) (3,250,4)

insert(10,248)

insert(12,245)

insert(4,260)

deletemin  (12,245) (12,245,8),(3,250,4)
insert(13,140)

10 insert(5,142)

11 deletemin  (13,140) (13,140,11),(12,245,8),(3,250,4)
12 deletemin  (5,142) (5,142,12),(12,245,8),(3,250,4)
13 deletemin  (10,248) (10,248,13),(3,250,4)

14 deletemin  (4,260) (4,260,14)

© 00 ~1 DI ]

Table 2: Sequence of Priority Queue operations illus-
trating answer validation algorithm

deletemin (or deletemax) returns the ordered pair which
is smallest (or largest) according to the total or-
der defined above and deletes this pair. If the
set is empty then the token “empty” is returned.

min (or max) returns the ordered pair which is small-
est (or largest) according to the total order de-
fined above. If the set is empty then the token
“empty” is returned.

If an operation violates one of the requirements de-
scribed above then it is considered to be ill-formed.
Also, if an operation has the wrong number or type of
arguments it is considered to be ill-formed.

Many different types and combinations of data struc-
tures can be used to support different subsets of these
operations efficiently.

7 Answer Validation for Prior-
ity Queue

We will first consider the priority-queue abstract data
type which allows only two operations: insert and
de'letemin. An example of a sequence of such oper-
ations appears in table 2. Many different data struc-
tures can be used to implement priority queues includ-
ing heaps [17], balanced search trees such as AVL trees
(1), red-black trees [7], or b-trees [3]. It is possible to
Process a sequence of O(n) operations in O(nlog(n))
time using the data structures above. Furthermore,
there is a lower bound of f(n log(n)) because it is pos-
sible to sort using a priority queue. Remarkably, the
answer-validation problem can be solved using only
O(n) time, as documented below.

Esch operation is time-stamped, i.e., the opera-
tions are assigned integers sequentially starting with
1 which is easy to do with a counter. The answer-
validation algorithm uses a stack called deletestack.
The contents of this stack are illustrated in table 2.
The top of the stack is on the left in table 2.

Let us consider the kinds of tests that an answer-
validation algorithm for s priority queue might per-
form. Suppose (i,k) is the answer to some deletemin
operation. Further, suppose (i',k’) was deleted in a
previous deletemin operation. If the priority queue is
correct then either (i,k)>(i',k') or (i',k’) was deleted
before (i,k) was inserted. This suggests that the time
of insertion and deletion for elements should be recorded
and the algorithm below does this. Unfortunately, if
an algorithm compares an ordered pair which has been
deleted against all previously deleted ordered pairs
then the algorithm complexity is at least O(m?). To
avoid this the deletestack is used. The deletestack was
designed to allow many compatrisons to be done im-
plicitly and to reduce the complexity.

Algorithm for Answer Validation for Prioﬁty
Queue

Input: sequence of On) operations together with ar-
guments and supposed answers for the priority-queue
data type.

Output: “correct”, “incorrect” or “ill-formed”

Declazations: Array called inserttime indexed by item
number. Array elements contain either “absent™ or
a time-stamp. Array called keyvalue indexed by item
number. Array elements contain either “absent™ or
a key value. Initially, each element in these two ar-
rays contains “absent”. Stack of ordered triples called
deletestack. Each ordered triple has the following formn:
first element is an item number, second element is a
key value, and third element is a titne-stamp. deletes-
tack is initially empty.

In the first phase of the algorithm we process each op-
eration as it appears serially using the following rules:

Let currenttime refer to the time-stamp of the opers-
tion being processed.

insert(i,k): If inserttime[i)#“absent” then output “ill-
formed™ and stop. Otherwise, let inserttime[i] = cur-
renttime and let keyvalue[i]=k.

deletemin  (i.k): {where (i,k) is the supposed answer
to the deletemin operation.) If inserttime(ij="absent™
or keyvalue[i]#k then output “ill-formed™ and stop.

Otherwise, let (i’,k’) be the item nuinber and key
number of the triple on the top of deletestack (if there
is one). Repealedly pop the stack until (i,k)<{(i' k') or
until deletestack is empty.

If deletestack is empty then push the triple
(i,k,currenttime) onto deletestack. Further, let insert-
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time[i}="“absent™ and let keyvalue[i)=“absent™ and pro-
cess the next priority queue operation.

If deletestack is non-empty then let the top element
be (i',k’ deletetime’). If inserttime]i]<deletetime’ then
output “incorrect” and stop. Otherwise, push the
triple (ik,currenttime) onto deletestack. Next, let in-
serttimeli]=“absent™ and let keyvalue[i)=“absent™ and
process the next priority queue operation.

In the second phase of the algorithm we operate
on the items which have been inserted but have never
been deleted.

Scan the array inserttime and for each jtem number
for which inserttimeli]#“absent” construct an ordered
triple (i,keyvalue[i],inserttime[i]). Call this set of or-
dered triples remainders.

Use a bucket sort to sort the triples in remainders by
their time-stamps, i.¢., the third element of the ordered
triple.

Merge the triples in remainders together with the triples
in deletestack so that they are all ordered by their
time-stamps, i.e., the third element of the ordered
triple.

Scan the combined triples to determine if there exist
two triples which satisfy the following: inserttime[i]<
deletetime’ and (i,keyvalue[i])<(i’ k'); where one triple
is from remainders and has the form (i,keyvalue[i),
inserttime(i]) and where the other triple is from deletes-
tack and has the form (i",k’ deletetime’);

If these two triples exist then output “incorrect” and
stop. Otherwise output “correct” and stop.

Theorem 7.1 The algorithm for answer validation of
the priority queue abstract data type s correct.

Proof:  Clearly the algorithm for answer validation
always terminates. We must show that the algorithm
outputs “correct” iff the operations together with ar-
guments and supposed answers are correct. Because of
space limitations we will only give a proof for the more
difficult half of this iff statement. We shall use a proof
by contradiction. Assume that the sequence of opera-
tions, arguments and supposed answers is considered
correct by the algorithm but actually is incorrect. The
use of the array inserttime and the symbo! “absent”
assures that no item is deleted when it is absent or in-
serted when it is already present. The use of the array
keyvalue assures that items do not change keyvalue
when they are present in the data type set. There is
only one remaining way in which a sequence can be
incorrect. This occurs when an ordered pair is deleted
by a deletemin operation, however, it does not really
have the smallest key value.

This means, there exist ordered pairs (i ,k,) and
(i;,kg) such that (i;,k1)>(i3,kz) and (i;,kl) is deleted

while (i3,k3) is present in the data type set. In add;.
tion, we may specify that (i;.k;) is the Inrgest ordered
pair deleted while (i3,k;) is present. Lel ins; be the
time that i, was inserted and let del; be the time that
iy was deleted. Let ins; be the time that iy wag in-
scried and let del; be the time that i; was deleted (it
it was deleted). There are two cases.

Case 1: Suppose that (i,k;) is ultimately deleted.
We know that (i,ky)> (i3 k2) by assumption. del, >del,
since item iy is deleted afte, item i;. ins; <del; since
item i; was present when item i, was deleted.

Consider the situation when item iy is deleted wit),
8 deletemin operation. The ordered triple for item iy
must appear in deletestack just before the Processing
of the iy deletion operation. This follows because the
triple for item §; can only be removed from deletestack
by a larger element and yet (i1,ky) refers to the largest
ordered pair deleted while (iz,k;) was present. Now,
since (iy,k;)>(iz,kz) the ordered triple for item i, will
remain in deletestack even after deletestack is popped
during the processing of the deletemin operation for
item i;. Suppose the top of deletestack is (i;.kg.del,)
after the popping.

It is easy to show that the time-stamps on deletes.
tack are monotonically ordered with the largest time-
stamp at the top. For this reason we know that
dely>del;. We noted earlier that del, >ins;. But if
ins;<dels then the algorithm outputs “incorrect™ when
it processes the deletemin operation. This contradicts
our assumptlion that the sequence of operations, ar-
guments and supposed answers was considered correct
by the algorithm,

Case 2: Suppose the ordered pair (i, k) is never
deleted. In the second phase of the algorithm the or-
dered triple (i3,k2,ins;) is constructed and is compared
against the ordered triples in deletestack.

The same argument that was used in case 1 above
can be used to show that the test performed in the
second phase of the algorithm would detect a problem

" and cause “incorrect” to be output. This contradicts
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our assumption that the sequence of operations, argu-
ments and supposed answers was considered correct by
the algo:ithm. Since both cases lead to a contradiction
our proof is complete. |

Theorem 7.2 The answer validation algorithm for pri-
ority queue has a time complezity of O(n) for process-
ing a sequence of O(n} operations.

Proof: ~ We first analyze phase one of the algorithm.
Note, there is a constant amount of work done for pro-
cessing each single operation if we exclude the cost of
popping the deletestack. Interestingly, popping the
deletestack can take O(n) time for the processing of
a single operation. Luckily, the total amortized com-
Plexity for popping the deletestack while processing a
sequence of O(n) operations is still only O(n). This
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is true because each item which is inserted and later
deleted is piaced on deletestack and is popped at most
once,

We now consider phase two. The cost of array
scanning and constructing the triples is O(n). The
cost of the bucket sort is O(n) and the cost of the
merge is also O(n). The final test can be implemented
with a simple scan with a complexity of O(n). Hence
the overall complexity is O(n)

We have solved the answer-validation problem for
abstract data structures that support the following set
of operations: member, insert, delete, deletemin, min,
deletemax, and max. The algorithm used to solve this
problem is intricate but efficient. It requires only O(n)
time to process O(n) operations. A detailed descrip-
tion of our solution, however, is beyond the scope of
this version of the paper.

8 Conclusions

The results reported in this paper significantly gen-
eralize the applicability of the certification-trail tech-
nique. In our previously reported work on certification
trails [11], we had to customize each algorithm appli-
cation, but we have now developed trails appropriate
to wide classes of algorithms. These certification trails
ate based on common data-structure operations such
as those carried out using balanced binary trees and
heaps. Any algorithm using these sets of operations
can therefore employ the certification trail method to
achieve software fault tolerance. To express the full
generality of these ideas, we have provided construc-
tions of trails for abstract data types such as priority
queues and union-find structures. These trails are ap-
Plicable to any data-structure implementation of the
abstract data type. These ideas lead naturally to mon-
1tors for data-structure operations. We are currently
working on an experimental evaluation of the approach
and initial results are promising.
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